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Filter Design/Synthesis Approaches
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Multiple-loop Feedback – One type shown 
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Leapfrog Filters
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Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though

the real benefits and limitations of the structure are often not articulated 

Review from last lecture



Leapfrog Filters
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Observation:   This structure appears to be dramatically different 

than anything else ever reported and it is not intuitive why this 

structure would serve as a filter, much less, have some unique and 

very attractive properties

To understand how the structure arose, why it has attractive properties,

and to identify limitations, some mathematical background is necessary

Review from last lecture



Background Information for Leapfrog Filters

Theorem 1:  If the LC network delivers maximum power to the load at 

a frequency  ω, then

for any circuit element in the system except for x = RL 

( )
0

T jω

x
S =

RS

RLVIN VOUT

LC 

Network

This theorem will  be easy to prove after we prove the following theorem:

Assume the impedance RS is fixed

Review from last lecture



Implications of Theorem 1
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Many passive LC filters such as that shown below exist that have near

maximum power transfer in the passband

( )T jω

ω

If a component in the LC network changes a little, there is little change

in the passband gain characteristics (depicted as bandpass)

in passband( )T j

x
0S 

Review from last lecture



Implications of Theorem 1

If a component in a biquad changes a little, there is often a large  change

in the passband gain characteristics (depicted as bandpass)

( )T jω

ω

( )T jω

ω
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ω
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ω
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Implications of Theorem 1
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Good doubly-terminated LC networks often much less sensitive to

most component values in the passband than are cascaded biquads !

This is a major advantage of the LC networks but can not be applied practically

in most integrated applications or even in pc-board based designs
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Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

For components in the LC Network observe

k

k

1
Y

sL
= k

k

1
Z

sC
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Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

( )1 0 2 1I V V Y= −

( )2 1 3 2V I I Z= −

( )3 2 4 3I V V Y= −

( )4 3 5 4V I I Z= −

( )6 5 7 6V I I Z= −

8 7 8V I Z=

( )5 4 6 5I V V Y= −

( )7 6 8 7I V V Y= −

Complete set of independent equations

that characterize this filter

All sensitivity properties of this 

circuit are inherently embedded in 

these equations!  

Solution of this set of equations is tedious
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Consider now only the set of equations and disassociate them from 

the circuit from where they came

( )1 0 2 1I V V Y= −

( )2 1 3 2V I I Z= −

( )3 2 4 3I V V Y= −

( )4 3 5 4V I I Z= −

( )6 5 7 6V I I Z= −

8 7 8V I Z=

( )5 4 6 5I V V Y= −

( )7 6 8 7I V V Y= −

Make the associations

1 1I V '=

3 3I V'=

5 5I V'=

7 7I V'=

( )1 0 2 1V V V Y' = −

( )2 1 3 2V V V Z' '= −

( )3 2 4 3V V V Y' = −

( )4 3 5 4V V V Z' '= −

( )6 5 7 6V V V Z' '= −

8 7 8V V Z'=

( )5 4 6 5V V V Y' = −

( )7 6 8 7V V V Y' = −

Rewrite the equations as

This association is nothing more than a renaming

of variables so all sensitivities WRT Y’s and Z’s will

remain unchanged!
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

( )1 0 2 1V V V Y' = −

( )2 1 3 2V V V Z' '= −

( )3 2 4 3V V V Y' = −

( )4 3 5 4V V V Z' '= −

( )6 5 7 6V V V Z' '= −

8 7 8V V Z'=

( )5 4 6 5V V V Y' = −

( )7 6 8 7V V V Y' = −

k

k

1
Y

sL
= k

k

1
Z

sC
=

For the LC filter, recall

( )1 0 2

1

1
V V V

R

' = −

( )2 1 3

2

1
V V V

sC

' '= −

( )3 2 4

3

1
V V V

sL

' = −

( )4 3 5

4

1
V V V

sC

' '= −

( )6 5 7

6

1
V V V

sC

' '= −

8 7 8V V R'=

( )5 4 6

5

1
V V V

sL

' = −

( )7 6 8

7

1
V V V

sL

' = −

These can be written as

Observe that in the new 

parameter domain the set of 

intermediate equations all look 

like integrator functions if the 

primed and unprimed variables 

are all voltages !

1

1

1
Y

R
=

8 8Z R=

And the source and load termination relationships were
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

( )1 0 2

1

1
V V V

R

' = −

( )2 1 3

2

1
V V V
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( )3 2 4

3

1
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( )6 5 7
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8 7 8V V R'=

( )5 4 6

5

1
V V V
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' = −

( )7 6 8

7

1
V V V
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' = −

Observe that in the new parameter domain the intermediate equations all look 

like integrator functions if the primed and unprimed variables are all voltages !

If any circuit is characterized by these equations, the sensitivities to the 

integrator gains will be identical to the sensitivities of the original circuit to 

the Ls and Cs !
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came
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Each equation corresponds to either an integrator or summer with the output

voltage output variables and the gain indicated (don’t worry about the units)

0 inV V=
8 outV V=
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

( )1 0 2
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The interconnections that complete each equation can now be added
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came
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Integrators Corresponding to Lossless Network 

2

1

sC
3

1

sL 4

1

sC
5

1

sL 6

1

sC
7

1

sL1

1

R 8R

1
'V 3

'V 5
'V

7
'V

2V
4V

8V

6V

0V



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

The Leapfrog Configuration 

0 inV V= 8 outV V=

Input summing and weighting can occur at input to the first integrator

The difference between V8 and V’7 is only a scale factor that does not affect shape, 

and the weighting on the Vin input also does not affect shape, thus

Integrators Corresponding to Lossless Network 
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Integrators Corresponding to Lossless Network 
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Integrators Corresponding to Lossless Network 
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Lossless LC Network

The Leapfrog Configuration 

The terminations on both sides have local feedback around an integrator

which can be alternately viewed as a lossy integrator 

Could redraw the structure as a cascade of internal lossless integrators with

terminations that are lossy integrators but since there are so many different 

ways to implement the integrators and summers, we will not attempt to 

make that association in the block diagram form but in most practical 

applications a lossy integrator is often used on the input or the output or 

both
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Consider the first two stages:
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1

sC1

1

R

1
'V 2V

I NV

3
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( )1 0 2

1

1
V V V

R

' = −

( )2 1 3

2

1
V V V

sC

' '= −

( )2 0 2 3

1 2

1 1
V V V V

R sC

' 
= − − 
 

1
2 IN 3

1 2 1 2

R1
V V V

1 R C s 1 R C s

'   
= −   

+ +   

These two blocks act as a single summing lossy integrator block with loss factor R1
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Consider the last two stages:
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These two blocks act as a lossy integrator block with loss factor Rn

n 1

1

sL −
nR

n 1
'V −

nV

n 2V −

n n 1 nV V R'
−=

( )n 1 n 2 n

n 1

1
V V V

sL

'
− −

−

= −
( )n n 2 n n

n 1

1
V V V R

sL
−

−
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n
n n 2

n 1 n

R
V V

sL R
−

−

 
=  

+ 



2

1

sC1

1

R

1
'V 2V
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3
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1
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1 2 1 2

R1
V V V

1 R C s 1 R C s

'   
= −   

+ +   

Implementation with Miller Integrators:

AV

CV
R

R CB

RA RA

BV

4

1

sC
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CV
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2V

R

R1

R1

C

3
'V

INV

RA RA

B A C

B B

1 1
V V V

RC s RC s

   
= −   

   

Can fix either R or C on each stage



Implementation with OTA-C  Integrators:

1

sC

AV

CV

BV

B A C

1 1
V V V

sC sC

   
= −   

   

Can fix either gm or C on each stage  (showing here for gm=1)

gm
BV

CV

C

AV

mg =1

Internal Lossless Stages
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1 R C s 1 R C s

'   
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+ +   

Implementation with OTA-C  Integrators:

Can fix either gm or C on each stage  (showing here for gm=1)

gm1

gmLOSS

2V

3
'V

C2

gm2

gm3

inV Input Termination Block

m1

-1

mLOSS 1

-1

m2 1

m3

g =1

g =R

g  = R

g =1

gm

gm

2V

3
'V

C2

inV

Input Termination Block

mg =1 For 1 Ω source termination

For 1 Ω source termination this simplifies to: 



Implementation with OTA-C  Integrators:

Can fix either gm or C on each stage  (showing here for gm=1)

n 1

1

sL −
nR

n 1
'V −

nV

n 2V −

𝑉𝑛 = 𝑉𝑛−2
𝑅𝑛

𝑠𝐿𝑛−1 + 𝑅𝑛

gm1 nV

Ln-1

n 2V −

gmLOSS

gm3

gm2
n 1
'V −

Termination Block

m1

-1

mLOSS n

-1

m2 n

m3

g =1

g =R

g  = R

g =1

For 1 Ω load termination this simplifies to: 

gm

Ln-1

n 2V −

gm

n 1
'V −

Termination Block

For 1 Ω load termination

nV

mg =1
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The Leapfrog Configuration 

I1(s)

Integrator

I2(s)

Integrator

I3(s)
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I4(s)
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Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

In the general case, this can be redrawn as shown below 

Note the first and last integrators become lossy because of the local feedback

Integrators Corresponding to Lossless Network 
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The Leapfrog Configuration 

The passive prototype filter from which the leapfrog was designed has

all shunt capacitors and all series inductors and is thus lowpass.

The resultant leapfrog filter has the same transfer function and  is thus lowpass

Integrators Corresponding to Lossless Network 
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The Passive Prototypes with Maximum Power 

Transfer in Passband

Doubly-terminated LC filters with near maximum power transfer in the passband 

were developed from the 30’s to the 60’s

Seldom discussed in current texts but older texts and occasionally software tools 

provide the passive structures needed to synthesize leapfrog networks

One good book is that by Zverev



The Passive Prototypes with Maximum Power 

Transfer in Passband

Must start with correct filter type:

(e.g. BW, CC, Cauer)



The Passive Prototypes with Maximum Power 

Transfer in Passband

The Butterworth Low-Pass Filters

(appear from top to bottom in table)

(appear from bottom to top in table)

Can do Thevenin-Norton Transformations

First element is capacitor

First element is inductor



The Passive Prototypes with Maximum Power 

Transfer in Passband

Normalized so RL=1





Example:

Design a 6th-order BW lowpass Leapfrog filter with equal source and load 

terminations,  and with a 3dB band edge of 4KHz.

Start with the normalized BW lowpass filter

(appear from top to bottom in table)

Do Norton to Thevenin transformation at input



Rs=1,  C1=.5176, L2=1.414, C3=1.939, L4=1.9319, C5=1.4142, L6=0.5176

Note index differs by 1 from that used for Leapfrog formulation
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1

R 8R1
'V 3
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'V2V 4V 8V
6V0V

R1=1,  C2=.5176, L3=1.414, C4=1.939, L5=1.9319, C6=1.4142, L7=0.5176

Changing the index notation:

Implement in the technology of choice

Combine loss on input and output integrators to eliminate two stages

Do frequency denormalization to obtain band-edge at 4KHz

Do impedance scaling to obtain acceptable component values

Labeled voltages are single-ended voltages at “+” inputs to the integrators



Bandpass Leapfrog Structures

2 2
0

n

s
s

s

ω

BW

+
→

2

n

s 1
s

s nBW

+
→

2 2
n 0

1 s

s s

BW

ω
→

+

2 2
n 0

1 s

s s s BW

BW

ω 
→

+ + +

2
n

s1

s s 1

nBW
→

+

2
n n

s1

s s s BW 1

nBW

 
→

+ + +

Consider lowpass to bandpass transformations

Un-normalized Normalized



Bandpass Leapfrog Structures

2 2
0

n

s
s

s

ω

BW

+
→

2 2
n 0

1 s

s s

BW

ω
→

+ 2 2
n 0

1 s

s s s BW

BW

ω 
→

+ + +

Bandpass Leapfrog Structure obtained by replacing integrators

by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be 

retained  at the image frequencies of the bandpass filter

Integrators map to bandpass biquads 

with infinite Q
Lossy integrators map to bandpass biquads 

with finite Q



Bandpass Leapfrog Structures

2 2
n 0

1 s

s s

BW

ω
→

+ 2 2
n 0

1 s

s s s BW

BW

ω 
→

+ + +

Bandpass Leapfrog Structure obtained by replacing integrators

by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be 

retained  at the image frequencies of the bandpass filter

Integrators map to bandpass

 biquads with infinite Q
Lossy integrators map to bandpass 

biquads with finite Q

Invariably the resistance spread or the capacitance spread increases with Q

• Does this imply that the area will get very large if Q gets large?

• But what about infinite Q?

• Will infinite Q biquads be unstable?

• Is this a problem ?



Stay Safe and Stay Healthy !



End of Lecture 33
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